TinyML Book Released!

book_cover.jpg

I’ve been excited about running machine learning on microcontrollers ever since I joined Google and discovered the amazing work that the speech wakeword team were doing with 13 kilobyte models, and so I’m very pleased to finally be able to share a new O’Reilly book that shows you how to build your own TinyML applications. It took me and my colleague Dan most of 2019 to write it, and it builds on work from literally hundreds of contributors inside and outside Google. The most nerve-wracking part was the acknowledgements, since I knew that we’d miss important people, just because there were so many of them over such a long time. Thanks to everyone who helped, and we’re hoping this will just be the first of many guides to this area. There’s so much fascinating work that can now be done using ML with battery-powered or energy-harvesting devices, I can’t wait to see what the community comes up with!

To give you a taste, there’s a hundred-plus page preview of the first six chapters available as a free PDF, and I’m recording a series of screencasts to accompany the tutorials.

One response

  1. Great book!

    I have a question regarding the MagicWand project – on how to re-train the model with new accelerometer data.

    I assume I should generate a new weights file for my model.

    How should I modify the train.py to generate a new weights file ./netmodels/CNN/weights.h5″)
    instead of using the default one provided in the sample code?

    Thanks

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: